PHYSICAL CHEMISTRY

DPP No. 39

Total Marks: 29

Max. Time: 31 min.

Topic: Chemical Equilibrium

Type of Questions Single choice Objective ('-1' negative marking) Q.1 to Q.7 Subjective Questions ('-1' negative marking) Q.8 to Q.9 (4 marks, 5 min.)					M.M., Min. [21, 21] [8, 10]
1.	In a reaction A (g)+ 2B (g) \rightleftharpoons 2C (g), 2 moles of 'A', 3 moles of 'B' and 1 mole of 'C' are placed in a 2 flask and the equilibrium concentration of 'C' is 1 mol/L. The equilibrium constant (K_{\odot}) for the reaction is (A) 0.33 lit/mol (B) 1.33 lit/mol (C) 1.66 lit/mol (D) 0.66 lit/mol				
2	For the reaction : H ₂ (g (A) total pressure (C) the amounts of H ₂	$g(g) + I_2(g) \Longrightarrow 2HI(g)$, the and I_2 taken initially	equilibrium consta (B) addition of c (D) temperature	catalyst	
3.	In a reversible chemical reaction having two reactants in equilibrium with one product, if the initial concentration of both the reactants is doubled, then the equilibrium constant will: (A) also be doubled (B) be halved (C) become one fourth (D) remain the same.				
4.	For the equilibrium $2H_2O(g) \rightleftharpoons 2H_2(g) + O_2(g)$, equilibrium constant is K_1 . For the equilibrium $2CO_2(g) \rightleftharpoons 2CO(g) + O_2(g)$, equilibrium constant is K_2 . Then, the equilibrium constant for $CO_2(g) + H_2(g) \rightleftharpoons CO(g) + H_2O(g)$ is :				
	(A) K ₁ K ₂	(B) $\frac{K_1}{K_2}$	(C) $\sqrt{\frac{K_1}{K_2}}$	(D) $\sqrt{\frac{K_2}{K_1}}$	
5.	$P_{\rm C} = P_{\rm B} = 0.30$ atm. If	ction A(g) + B(g) \rightleftharpoons C(g) at equilibrium, the partial pressure of the species are $P_A = 0.15$ atm, 1.30 atm. If the capacity of reaction vessel is reduced, the equilibrium is re-established. In the on, partial pressure A and B become twice. What is the partial pressure of C: (B) 0.6 atm (C) 1.2 atm (D) 1.8 atm			
6.	The equilibrium constant for the reaction $A_2(g) + B_2(g) \Longrightarrow 2AB(g) \text{ is 20 at 500 K.}$ The equilibrium constant for the reaction, $2AB(g) \Longrightarrow A_2(g) + B_2(g) \text{ at 500 K would be :}$				
	(A) 20	(B) 0.5	(C) 0.05	(D) 10	
7.	The value of K_p for the reaction, $A(g) + 2B(g) \rightleftharpoons C(g)$ is 25 atm ⁻² at a certain temperature. The value of K_p				
	for the reaction, $\frac{1}{2}C(g) \iff \frac{1}{2}A(g) + B(g)$ at the same temperature would be :				
	(A) 25 atm ⁻¹	(B) $\frac{1}{25}$ atm ⁻¹	(C) $\frac{1}{5}$ atm	(D) 5 atm	
8.	For the gaseous reaction of XO with O_2 to form XO_2 , the equilibrium constant at 39 1 \times 10 ⁻⁴ lit/mole. If 1 mole of XO and 2 mole of O_2 are placed in a 1 L vessel and allowed to O_2				

Prove that the pressure at equilibrium obtained upon 50% dissociation of PCI₅ as follows at 250°C is

equilibrium, what will be the equilibrium concentration of each of the species?

numerically three times of K_p . $PCI_5(g) \rightleftharpoons PCI_3(g) + CI_2(g)$

9.

swer Ke

DPP No. #39

(D)

1.

(B)

2

(D) (C) 3.

(D)

5. (C)

6.

(C)

7.

8.

[XO] = 0.985 M; $[O_2]$ = 1.992 M; $[XO_2]$ = 0.0141 M 9. $K_p = \frac{1}{3}$. P or p = $3K_p$.

DPP No. #39

8. The equilibrium reaction is

since the unit of K given is lit/mole.

$$2XO(g) + O_2(g) \rightleftharpoons 2XO_2(g)$$

Initial conc.

Conc. at equilib. 1-2x

 $K_c = \frac{[XO_2]^2}{[XO]^2[O_2]} = \frac{(2x)^2}{(1-2x)^2(2-x)} = \frac{4x^2}{(1-2x)^2(2-x)} = \frac{4x^2}{2}$

Since, the value of equilibrium constant is very small (1 × 10-4), so 2x can be ignored with respect to 1 and x can be ignored with respect to 2.

$$1 \times 10^{-4} = \frac{4x^2}{2}$$

$$x = 7.07 \times 10^{-3}$$

we can see that the value of x is very small, so the assumtion made was correct as it is within 1.4% of the actual value. Thus, the assumption made is correct and acceptable.

[XO] = 1 - 0.01414 = 0.985 M $[O_0] = 2 - 0.00707 = 1.992 M$ $[XO_0] = 0.0141 M$

9.

0 Initial moles (say)

PCI₅ PCI₃ + CI₂ (1 - 0.5) 0.5 0.5

Moles at equilibrium

Total moles at equilibrium = 0.5 + 0.5 + 0.5 = 1.5

$$K_p = \frac{p_{PCl_3}.p_{Cl_2}}{p_{PCl_2}} = \frac{\left(\frac{0.5}{1.5}p\right)\left(\frac{0.5}{1.5}p\right)}{\left(\frac{0.5}{1.5}p\right)} \tag{p = total pressure}$$

or
$$K_p = \frac{1}{3}.p$$
 or $p = 3K_p$.